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The flow past a cylinder bounded by parallel planes in a rotating frame is treated in 
terms of a nonlinear Stewartson layer. It is shown that separation is strongly depen- 
dent on the ratio of the Rossby number to the square root of the Ekman number, 
covering the whole range from fully attached flow to the classical non-rotating 
separated flow past a cylinder. The results are in agreement with published experi- 
mental observations. 

1. Introduction 
In  an experimental study of slightly viscous flow past a circular cylinder in a rapidly 

rotating frame, Boyer (1  970) found a pronounced effect of rotation on the flow field. 
In  the limit of zero Rossby number the flow is fully attached. For finite but small 
Rossby numbers separation occurs. With increasing Rossby number the point of 
separation moves away from the rear stagnation point and the angle of separation 
approaches that of the non-rotating case when the flow is still dominated by rotation, 
i.e. for Rossby numbers O(O.1). The experiments also showed a marked asymmetry 
of the flow pattern with respect to the undisturbed uniform upstream flow direction. 
The asymmetry is most pronounced in the wake of the cylinder but it is already 
observed a t  the points of separation. 

A consideration of strictly two-dimensional rotating flow shows that rotation does 
not affect separation. This is because in the two-dimensional case no stretching of 
vortex lines occurs and the vorticity equation is identical to that for the non-rotating 
case. Therefore the three-dimensionality of the flow field in Boyer’s experiments 
cannot be neglected. This is achieved by accounting for the vortex stretching due to 
the Ekman suction from the top and bottom horizontal boundary layers. The following 
analysis shows that Boyer’s observations can be interpreted in terms of a nonlinear 
Stewartson Ea layer. 

2. Analysis 
We consider a steady flow past a circular cylinder of radius R and height H bounded 

by two infinite planes (figure 1) .  The system rotates with angular velocity i2 parallel 
to the axis of the cylinder. The flow, unbounded laterally, approaches the cylinder 
with uniform velocity U. 
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The non-dimensional equations of motion, in the rotating frame, are 

Ro(uu, + vuY + WU,) = - + v + E, [u,, + 
RO(UW, + uvU + WV,) = - $v - u + E, [v,, + (H/R)2  (vZx + vYY)], 

(uZx + uYY)], ( 1 4  

(1 b )  

( 1  C) 

and ux+vu+wz= 0. ( 1 4  

Ro(H/R)2 (UW, + vwY + WW,) = - $z + (H/R)2  E, [w, + (H/R)2 (wXz + wYY)] 

Here the scales for (u, v, w) are ( U ,  U ,  UHIR),  the scales for (x, y, z )  are (R ,  R, H ) ,  
E, = v / ( 2 Q H 2 )  is the vertical Ekman number, Ro = U/(20R)  is the Rossby number, 
and the pressure field $ is measured in units of ZpQ UR. 

We consider E, < 1,  Ro -4 1 and H / R  < O ( l ) ,  such that Re = Ro/[E,(H/R)~] B 1.  
This divides the flow field into three regions: (a)  the top and bottom horizontal Ekman 
layers; (b )  the vertical boundary layer along the cylinder and ( c )  the interior inviscid 
flow. Away from the vertical layer, the interior flow is controlled by the secondary 
circulation imposed by the difference in vorticity between the interior flow and the 
horizontal boundary layers. This can be expressed in terms of the Ekman suction, 
which is absent in the interior since the far flow is uniform and has no relative vorticity. 
The equation governing the stream function of the interior flow is then, to leading 
order, 

with solution 

V2$ = 0, (2) 

( 3 4  

(3b, c )  

$ = - (T - r-1) sin 0, 

ur = - ( 1  - r -2)  cos 8, uo = ( 1  +r2) sin8, 

where r = (x2 + y2)&. 
Unlike the interior flow, vortex stretching is present and is a dominant feature of 

the flow in the vertical layer. Since there is a difference in vorticity between the 
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vertical and horizontal layers, Ekman suction occurs and controls the structure of 
the vertical layer. Apart from this effect, the flow, being rapidly rotating, is quasi- 
two-dimensional. Thus the equations governing the vertical boundary layer away from 
the top and bottom layers are 

Ro(uu~+vu,) = - $ x + ~ + E ~ ~ y y ,  ( 4 4  

0 = -q5,-u, ux+vu+wz = 0. (4bY 4 
Here E ,  = v / ( ~ Q R ) ~  is the horizontal Ekman number. Because of the boundary- 
layer nature of the vertical layer, x and y can be considered as co-ordinates along and 
normal to the cylinder, respectively. It should be pointed out that the terms O(Ro), 
which are absent in the quasi-geostrophic approximation, are retained here. This will 
account for the asymmetry in the relative vorticity, which is of opposite sign on the 
two sides of the cylinder. 

Eliminating u from (4a ,  c), we obtain 

Since the horizontal velocity field is z-independent, ( 5 b )  can be integrated from the 
bottom to the top (i.e. from x = 0 to z = 1) to yield 

-$,,+v,+w(l)-w(O) = 0. (6) 

The vertical velocities w(0)  and w(1) a t  the edges of the horizontal Ekman layers can 
be related to the difference in vorticity between the vertical layer and the top and 
bottom planes. (See, for example, Greenspan 1968, p. 106.) Within the framework of 
the boundary-layer approximation, we can write 

~ ( i )  -w(O) = - 24Ei$,,, (7) 

where we have assumed linear Ekman layers. We now substitute (7) into (6) and 
integrate with respect to y to obtain 

v = # x  + 263; +, +X(X), (8) 

where f (2) is a function of integration, which is determined by substituting (8) into 
(5 a)  and using the asymptotic boundary conditions 

$,-.9(4, $,,+ 0, $,,,+ 0 as Y -f fa. (9) 

The & signs here refer to the left and right directions facing downstream. The function 
- g(z) is the outer flow velocity, determined from the solution of V2$ = 0. In  the present 
case of flow past a cylinder, 

g(x) = - 2sin (x). (10) 

For other configurations g(x) is the appropriate outer flow: for the flat plate, g(x) = - 1. 
Consequently 

and (5 a )  takes the form 
f (2) = Ro g(ga - 24@/R0) (11) 
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A t  the wall (y = 0 ) ,  v = 0, and (8) and ( 1 1 )  yield 
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from which we obtain by integration 

The no-slip boundary condition a t  the wall is supplemented by the equation 

& =  0 on y =  0, ( 1 5 )  

which is obtained from ( 4 b ) .  The structure of the vertical boundary layer is thus given 
by ( 1 2 )  with the conditions (9), (14) and (15). 

It is interesting to examine the various limits. 
(a)  When Ro + 0 and E ~ / R o  -+ 0, we obtain the classical non-rotating boundary- 

layer equation. This is so because the dissipation of vorticity due to Ekman suction 
is negligible compared with advection. 

( b )  When Ro --f 0 and E ~ I R o  -f 00, we obtain the classical linear Stewartson E* 
layer: E& H/(24R)  q5yyy- q5y = -9 .  

( c )  When Ro -+ 0 we obtain the familiar quasi-geostrophic approximation, i.e. iso- 
bars parallel to streamlines. 

Equation ( 1 2 )  is parabolic and its integration starts a t  the forward stagnation 
point x = 0. The integration over each side of the cylinder (left and right relative to 
the flow direction) is done separately, y extending from zero to plus or minus infinity, 
respectively. If in the solution for the right-hand side q5 and y are replaced by -4  
and - y, the net effect is to change the term 1 + R o ~ , ,  to 1 - Ro c,hlly, thereby introducing 
asymmetry. Recall that the term Ro & is the relative vorticity induced in the vertical 
boundary layer. This term, being O(Ro),  is absent in the quasi-geostrophic approxi- 
mation Ro -+ 0. 

The above analysis indicates that the vertical boundary layer is controlled by the 
parameters E ~ I R o ;  Ro and HIR.  E$/Ro determines the extent to which the vertical 
boundary layer is influenced by the horizontal Ekman layers. The effect of asymmetry 
is introduced through small but Jinite values of Ro. 

3. Results and discussion 
Equation ( 1 2 )  was solved numerically subject to the boundary conditions ( 9 ) ,  ( 1 4 )  

and (15) using techniques that have been developed for boundary-layer equations in 
non-rotating systems (Cebeci, Smith & Wang 1969). Solutions were found for a wide 
range of Ro, but for E, = 4.3 x lo-* in order to facilitate comparison with Boyer’s 
experiments. 

The dependence of the shear stress along the cylinder and consequently the point of 
separation on the parameters of the problem is of major physical interest. A necessary 
condition for the existence of separation is the presence of an adverse pressure gradient 
along the wall. (The actual value of the angle of separation is determined by the 
vanishing of the shear stress a t  the wall.) From ( 1 3 )  and ( 1 1 )  it  is readily seen that a 
sufficient condition for the existence of a fully attached flow is that 

Ei/24 R, 2 1 .  (16) 
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FIGURE 2. Shear stress along the cylinder. E ,  = 4.3 x -, present theory; ---, Stewart- 
son's linear solution; L, left side, facing downstream; R, right side, facing downstream. 

A necessary condition for the existence of separation is the violation of (16). The 
physical meaning of (1 6) is that the slowing down of the advection of vorticity, which 
is O(Ro),  as the flow approaches the rear stagnation point is not necessarily accompanied 
by a reduced shear stress at the wall since the excess vorticity produced at  the wall 
can be removed through an O(E$) suction of vorticity into the horizontal Ekman 
layers. 

Figure 2 depicts the non-dimensional shear stress along the wall on the two sides 
of the cylinder for three values of Ro. Note that, besides a minor error due to numerical 
difficulties in the vicinity of the rear stagnation point, the equality in (16) provides 
the bifurcation line separating fully attached flows from separated flows. The right- 
left asymmetry present in the flow field is indicated by a small but systematic increase 
in the shear stress along the right-hand side of the cylinder (facing downstream) 
relative to the left-hand side of the cylinder. The mechanism of asymmetry will be 
explained later when we consider the secondary circulation. The classical linear 
Stewartson E* layer yields 

as the non-dimensional shear stress. Figure 2 indicates that even when Ro = 0.01 
and E ~ / R o  1: 2.07, such that vortex stretching plays a dominant role in the dynamics 
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FIGURE 3. Separation angle as a function of the Rossby number. E, = 4.3 x 

of the vertical boundary layer, the linear theory is unsatisfactory except for x N in, 
for which the inviscid solution exterior to the boundary layer is locally stationary on 
the large scale R. 

The dependence of the separation angle 0, on Ro is shown in figure 3. Note the rapid 
decrease of 0, from the value n, corresponding to a fully attached flow, to approxi- 
mately 109") which is the angle of separation of the corresponding classical non- 
rotating two-dimensional flow. Following the usual practice we disregard the effect 
of the detached flow on the flow field upstream of the separation point. Boyer in his 
experiments reports that for his value Ro = 0.01, which corresponds to Ro = 0.02 in 
our case [in his paper the Rossby number is defined as U/(4QR)] ,  the flow was fully 
attached. Our results indicate that for E, = 4.3 x separation should occur for 
Ro > 0.0147 and that for Ro = 0.02, 0, N 147". This discrepancy can be attributed 
to the fact that near the bifurcation value the results are very sensitive to small changes 
in Ro, as can be seen from figures 2 and 3. Thus experimental uncertainty in the value 
of Ro can lead to a different bifurcation value of Ro. Coutanceau & Bouard (1977)  
report that in the classical non-rotating two-dimensional flow past a right circular 
cylinder sepa,ration occurs first for Re -N 2.2. (Their reported value of 4.4 is based on 
the diameter, while ours is based on the radius.) If we express (16) in terms of Re we 
find that separation is initiated when 

Re = (2EJ-i (R/H)2 .  (18) 
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FIGURE 4. Streamwise velocity profiles at various stations along the cylinder. E ,  = 4.3 x 10-4. 
All curves for right side of cylinder. ---, Ro = 0.18; ---, Ro = 0.01. 

Consequently, in rapidly rotating systems the flow can remain fully attached for 
Reynolds numbers which are much larger than the critical Reynolds number for the 
corresponding non-rotating flows. In Boyer’s experiments E,  = 4.3 x and 
R I H  = 0.5, which yields Re = 8.5. 

Profiles of u a t  various stations around the cylinder for two values of Ro are shown 
in figure 4. Note that for Ro = 0.18 the velocity profile changes markedly with 8, 
developing an inflexion point as the separation angle is approached. For Ro = 0.01 
the flow field is fully attached and the profile of u changes little in the streamwise 
direction. The u profiles are shown only for the right-hand side of the cylinder. 
The u profiles on the left-hand side of the cylinder have the same qualitative 
appearance. 

It was stated earlier that the location of the angle of separation depends on the 
ability of the horizontal Ekman layers to remove the vorticity produced at  the wall 
since the adverse pressure gradient slows down the mechanism of vorticity advection. 
If Ei/Ro < O(1) the Ekman layers play a secondary role. Thus when advection of 
vorticity weakens, the balance in the vorticity equation is achieved by reducing the 
vorticity produced at  the wall. In other words, the shear stress at the wall is reduced 
and separation occurs closer to the forward stagnation point. 

More insight into the mechanism responsible for separation and for the asymmetric 
properties of the flow field can be obtained if we inspect the secondary circulation, i.e. 
the velocity field normal to the wall. This is provided in figures 5 ( a )  and ( b ) ,  where v 
i s  positive when pointing to the left. Before inspecting these figures let us make the follow- 
ing observation. The relative vorticity induced in the vertical layers is negative on 
the left-hand side of the cylinder and positive on the right-hand side. Consequently, 
the horizontal Ekman layers cause awl& > 0 on the left side and aw/az < 0 on the 
right side, which in turn leads to a tendency for v < 0 on both sides of the cylinder. This 
v field advects vorticity towards the wall on the left side and away from the wall on 
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FIQWRE 5. Transverse velocity profiles at various stations along the cylinder. E ,  = 4.3 x 
-, right side; ---, left side, velocity shown with sign changed. (a) Ho = 0.01. ( b )  Ro = 0.18. 

the right side. This asymmetry in advection is partially balanced by an asymmetry 
in vorticity production: the production on the left side is somewhat less than that on 
the right side. This results in a reduced shear stress on the left side relative to the shear 
stress on the right side (see figure 3), thus explaining the asymmetry in the location 
of the separation angle (see figure 3) in accord with Boyer's experimental results. 
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FIGURE 6. Shear stress along flat plate. E, = 4.3 x 10-4.  
-, present theory ; ---, Stewartson's linear solution. 
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FIGURE 7 .  Streamwise velocity profiles at various stations along flat plate. E ,  = 4.3 x lo-'. 

The phenomenon of asymmetry is revealed in figures 5 (a )  and ( b ) ,  and being O(Ro), 
becomes more pronounced as the Rossby number increases. These figures demonstrate 
the complex nature of the vertical layer, which has a multiple structure. The inner 
region is seen to be controIled by the Ekman layer, as discussed above, andEi/Ro > 0(1)  
locally. In the outer region the influence of the Ekman layers weakens and Ei/Bo < O( 1) 
locally. In  the outer region the v field is more in line with the corresponding classical 
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FIGURE 8. Transverse velocity profiles at various stations along flat plate. E ,  = 4-3 x 
-, right side; ---, left side, velocity shown with sign changed. (a) Ro = 0.01. ( b )  Ro = 0.18. 

non-rotating case. The streamwise dependence of the v field follows from the depend- 
ence of the inviscid flow a t  the outer edge of the boundary layer on the streamwise 
co-ordinate [see (lo)]. [Since E$/Ro < O( 1) in the outer region of the boundary layer 
the continuity equation takes on the approximate form uz + vv 21 0.1 

So far we have analysed the flow field past a cylinder in a rotating system. Another 
problem of interest is that of a rotating flow past a vertical flat plate, for which g = - 1. 
The numerical results are depicted in figures 6-8 for the parameter values employed 
in the case of the cylinder. 
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Figure 6 shows the non-dimensional shear stress along the wall. The following 
observations should be made. All solutions yieId the same value of shear stress at 
x = 0, i.e. 

lim x~U,(O, .)/Re = 0.332, 

which is identical to Blasius’ solution for the classical two-dimensional non-rotating 
flow past a flat plate (Schlichting 1968, p. 128). Furthermore, it can be demonstrated 
that at x = 0 the equation governing the boundary-layer structure is identical to 
Blasius’ equation. Consequently, near the leading edge the flow field is always domi- 
nated by inertia and advection of vorticity is much more important than the removal 
of vorticity through the Ekman-layer suction. The situation is reversed downstream 
and the flow field approaches Stewartson’s E$ linear solution, given by (17). The length 
of the transition region from Blasius’ solution to Stewartson’s solution increases with 
Ro. It is astonishing that Stewartson’s solution, which has been found totally in- 
adequate for the case of the cylinder, is very satisfactory for the flat plate, provided 
that we are sufficiently far downstream from the leading edge. The only similarity 
with the case of the cylinder is that the shear stress develops asymmetry as Ro in- 
creases. The sense of the asymmetry is identical to that exhibited in the case of the 
cylinder. 

The features associated with figure 6 are also present in figure 7, which presents 
profiles of u a t  the stations x = 0 and x = 1. The multiple structure of the vertical 
boundary layer is again demonstrated most easily through the secondary circulation 
of the w field as shown in figures 8 (a)  and ( b ) .  The interpretation of the results follows 
the lines presented for the case of the cylinder. The transition from Blasius’ solution 
to Stewartson’s linear solution is most apparent in figure 8 (a) ,  where w < 0 at x = 1 
on both sides of the flat plate. This behaviour, which is completely at odds with the 
case of the cylinder, is a consequence of u being constant outside the vertical boundary 
layer. 

Finally, it is interesting to note that the results of this study may have geophysical 
applications. It has been suggested by J. G. Charney (private communication) that 
vortex shedding resulting from flow separation of a slightly viscous flow past a curved 
wall might be a possible mechanism for mountain-induced cyclogenesis. Such a 
situation could be relevant for the case of the Alps, for which a northerly flow passing 
between the Alps and the Pyrenees might shed large-scale vortices to the western 
Mediterranean. Such large-scale atmospheric flows are typically characterized by 
R o I E ~  > O( l ) ,  which indicates that the present theory might be applicable. 

x-+ 0 
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